Sains Malaysiana 53(1)(2024): 63-86

http://doi.org/10.17576/jsm-2024-5301-06

 

Genetically Engineered Mesenchymal Stem Cells using Viral Vectors: A New Frontier in Anti-Angiogenic Therapy

(Sel Stem Mesenkima Kejuruteraan Genetik menggunakan Vektor Virus: Suatu Sempadan Baharu dalam Terapi Anti-Angiogenik)

EWA CHOY YEE WA1,*, CHOY KER WOON2,3, WOON KAI SIONG1, MUHAMMAD AIDIL WAFI1, THEN KONG YONG1 & THEN KHONG LEK1

 

1CryoCord Sdn. Bhd., Suite 1-1, 1st Floor, Bio X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000

Cyberjaya, Selangor, Malaysia

2Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh

Campus,Jalan Hospital, 47000 UiTM Sungai Buloh, Selangor, Malaysia

3Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM),

Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Malaysia.

 

Received: 26 June 2023/Accepted: 9 January 2024

 

Abstract

Mesenchymal stem cells (MSCs) are adult stem cells that possess the remarkable ability to self-renew and differentiate into various cell lineages. Due to their regenerative potential, MSCs have emerged as the most commonly used stem cell type in clinical applications. Angiogenesis, the formation of new blood vessels, plays a critical role in several pathological conditions, including ocular neovascular diseases, cancer, and inflammatory disorders. Conventional anti-angiogenic therapies face limitations such as frequent visits for repeated doses, off-target effects and resistance development. Recent advances in genetic engineering techniques have opened up novel avenues in regenerative medicine. Genetically engineering MSCs using viral vectors presents a promising strategy to specifically target angiogenesis and enhance anti-angiogenic therapies' efficacy. Viral vectors, including lentiviruses, adeno-associated viruses and adenoviruses, provide an effective means of delivering therapeutic genes into MSCs, allowing the expression of a wide range of therapeutic agents, including anti-angiogenic proteins. This review explores the frontier of using genetically engineered MSCs delivered through viral vectors as a potent anti-angiogenic therapeutic approach. By leveraging the unique properties of MSCs and the targeted delivery capabilities of viral vectors, this approach initiates the potential to revolutionize anti-angiogenic therapy, offering new possibilities for the treatment of angiogenesis-related diseases.

 

Keywords: Angiogenesis; anti-angiogenic therapy; genetic engineering; mesenchymal stem cells; viral vectors

                

Abstrak

Sel stem mesenkima (MSCs) adalah sel stem dewasa yang memiliki keupayaan luar biasa untuk memperbaharui diri dan berubah menjadi pelbagai barisan sel. Disebabkan potensi regeneratif mereka, MSCs telah menjadi jenis sel stem yang paling biasa digunakan dalam aplikasi klinikal. Angiogenesis, pembentukan saluran darah baru, memainkan peranan penting dalam beberapa keadaan patologi, termasuk penyakit neovaskular okular, kanser dan penyakit keradangan. Terapi anti-angiogenesis konvensional mempunyai kekurangan seperti lawatan kerap untuk dos berulang, kesan di luar sampingan dan pembangunan rintangan. Kemajuan terkini dalam teknik kejuruteraan genetik telah membuka peluang baharu dalam perubatan regeneratif. Kejuruteraan genetik MSCs menggunakan vektor virus merupakan strategi yang berpotensi untuk menyerang angiogenesis secara khusus dan meningkatkan keberkesanan terapi anti-angiogenesis. Vektor virus termasuk lentivirus, virus adeno-terkait dan adenovirus menyediakan cara yang berkesan untuk menghantar gen terapi ke dalam MSCs, membolehkan ekspresi pelbagai agen terapeutik, termasuk protein anti-angiogenesis. Kajian ini meneroka hala tuju penggunaan MSCs yang direka bentuk secara genetik yang dihantar melalui vektor virus sebagai pendekatan terapeutik anti-angiogenesis yang berkuasa. Dengan memanfaatkan sifat unik MSCs dan keupayaan penghantaran yang dituju oleh vektor virus, pendekatan ini berpotensi untuk mengubah terapi anti-angiogenesis, menawarkan kemungkinan baru untuk rawatan penyakit berkaitan angiogenesis.

 

Kata kunci: Angiogenesis; kejuruteraan genetik; sel stem mesenkima; terapi anti-angiogenesis; vektor virus

 

REFERENCES

Adams, R.H. & Alitalo, K. 2007. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Reviews Molecular Cell Biology 8(6): 464-478.

Amari, A., Ebtekar, M., Moazzeni, S.M., Soleimani, M., Mohammadi-Amirabad, L., Tahoori, M.T. & Massumi, M. 2015. In vitro generation of IL-35-expressing human Wharton’s Jelly-derived mesenchymal stem cells using lentiviral vector. Iranian Journal of Allergy, Asthma and Immunology 14(4): 416-426.

Arnberg, F., Lundberg, J., Olsson, A., Samén, E., Jaff, N., Jussing, E., Dahlén, U., Nava, S., Axelsson, R., Ringdén, O., Kaipe, H. & Holmin, S. 2016. Intra-arterial administration of placenta-derived decidual stromal cells to the superior mesenteric artery in the rabbit: Distribution of cells, feasibility, and safety. Cell Transplantation 25(2): 401-410.

Chen, J., Li, C., Gao, X., Li, C., Liang, Z., Yu, L., Li, Y., Xiao, X. & Chen, L. 2013. Keratinocyte growth factor gene delivery via mesenchymal stem cells protects against lipopolysaccharide- induced acute lung injury in mice. PLoS ONE 8(12): e83303.

Choi, S.H., Tamura, K., Khajuria, R.K., Bhere, D., Nesterenko, I., Lawler, J. & Shah, K. 2015. Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas. Molecular Therapy 23(2): 235-243.

Chu, Y., Liu, H., Lou, G., Zhang, Q. & Wu, C. 2014. Human placenta mesenchymal stem cells expressing exogenous kringle1-5 protein by fiber-modified adenovirus suppress angiogenesis. Cancer Gene Therapy 21(5): 200-208.

Damasceno, P.K.F., de Santana, T.A., Santos, G.C., Orge, I.D., Silva, D.N., Albuquerque, J.F., Golinelli, G., Grisendi, G., Pinelli, M., Ribeiro Dos Santos, R., Dominici, M. & Soares, M.B.P. 2020. Genetic engineering as a strategy to improve the therapeutic efficacy of mesenchymal stem/stromal cells in regenerative medicine. Frontiers in Cell and Developmental Biology 8: 737. https://doi.org/10.3389/fcell.2020.00737

Desfarges, S. & Ciuffi, A. 2012. Viral integration and consequences on host gene expression. Viruses: Essential Agents of Life 2012: 147-175.

Ding, D.C., Shyu, W.C. & Lin, S.Z. 2011. Mesenchymal stem cells. Cell Transplant 20(1): 5-14. https://doi.org/10.3727/096368910x

Dissen, G.A., McBride, J., Lomniczi, A., Matagne, V., Dorfman, M., Neff, T.L., Galimi, F. & Ojeda, S.R. 2012. Using lentiviral vectors as delivery vehicles for gene therapy. In Controlled Genetic Manipulations, edited by Morozov, A. New Jersey: Humana Press. pp. 69-96.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, Fc., Krause, Ds., Deans, Rj., Keating, A., Prockop, Dj & Horwitz, Em. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317. https://doi.org/10.1080/14653240600855905

Dreyfuss, J.L., Giordano, R.J. & Regatieri, C.V. 2015. Ocular angiogenesis. Journal of Ophthalmology 2015: 892043.

D’souza, N., Rossignoli, F., Golinelli, G., Grisendi, G., Spano, C., Candini, O., Osturu, S., Catani, F., Paolucci, P., Horwitz, E.M. & Dominici, M. 2015. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Medicine 13: 186.

Esmaeilzadeh, A. & Farshbaf, A. 2015. Mesenchymal stem cell as a vector for gene and cell therapy strategies. Global J. Stem Cell Biol. Transplant 1(1): 17-18.

Espinosa, P., Spriet, M., Sole, A., Walker, N.J., Vaughan, B. & Galuppo, L.D. 2016. Scintigraphic tracking of allogeneic mesenchymal stem cells in the distal limb after intra‐arterial injection in standing horses. Veterinary Surgery 45(5): 619-624.

Gao, Z., Zhang, L., Hu, J. & Sun, Y. 2013. Mesenchymal stem cells: A potential targeted- delivery vehicle for anti-cancer drug loaded nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 9(2): 174-184.

García-Bernal, D., García-Arranz, M., Yáñez, R.M., Hervás-Salcedo, R., Cortés, A., Fernández-García, M., Hernando-Rodríguez, M., Quintana-Bustamante, O., Bueren, J.A., García-Olmo, D., Moraleda, J.M., Segovia, J.C. & Zapata, A.G. 2021. The current status of mesenchymal stromal cells: Controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy. Frontiers in Cell and Developmental Biology 9: 650664.

Gholamrezanezhad, A., Mirpour, S., Bagheri, M., Mohamadnejad, M., Alimoghaddam, K., Abdolahzadeh, L., Saghari, M. & Malekzadeh, R. 2011. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nuclear Medicine and Biology 38(7): 961-967.

Greber, U.F. & Flatt, J.W. 2019. Adenovirus entry: From infection to immunity. Annual Review of Virology 6: 177-197.

Hajizadeh-Sikaroodi, S., Hosseini, A., Fallah, A., Estiri, H., Noormohammadi, Z., Salehi, M., Mohammad Hossein Ghaderian, S., Akhavan Niaki, H., Soleimani, M. & Kazemi, B. 2014. Lentiviral mediating genetic engineered mesenchymal stem cells for releasing IL-27 as a gene therapy approach for autoimmune diseases. Cell Journal (Yakhteh) 16(3): 255-262.

Henriksson, H.B., Papadimitriou, N., Hingert, D., Baranto, A., Lindahl, A. & Brisby, H. 2019. The traceability of mesenchymal stromal cells after injection into degenerated discs in patients with low back pain. Stem Cells and Development 28(17): 1203-1211.

Hirota, K. & Semenza, G.L. 2006. Regulation of angiogenesis by hypoxia-inducible factor 1. Critical Reviews in Oncology/Hematology 59(1): 15-26.

Hmadcha, A., Martin-Montalvo, A., Gauthier, B.R., Soria, B. & Capilla-Gonzalez, V. 2020. Therapeutic potential of mesenchymal stem cells for cancer therapy. Frontiers in Bioengineering and Biotechnology 8: 43.https://doi.org/10.3389/fbioe.2020.00043

Hodgkinson, C.P., Gomez, J.A., Mirotsou, M. & Dzau, V.J. 2010. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum. Gene Ther. 21(11): 1513-1526. https://doi.org/10.1089/hum.2010.165

Hu, M., Yang, J-L., Teng, H., Jia, Y-Q., Wang, R., Zhang, X.W., Wu, Y., Luo, Y., Chen, X-C., Zhang, R., Tian, L., Zhao, X. & Wei, Y-Q. 2008. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model. BMC Cancer 8: 306.

Hu, Y-L., Fu, Y-H., Tabata, Y. & Gao, J-Q. 2010. Mesenchymal stem cells: A promising targeted-delivery vehicle in cancer gene therapy. Journal of Controlled Release 147(2): 154-162.

Javan, M.R., Khosrojerdi, A. & Moazzeni, S.M. 2019. New insights into implementation of mesenchymal stem cells in cancer therapy: Prospects for anti-angiogenesis treatment. Frontiers in Oncology 9: 840. https://doi.org/10.3389/fonc.2019.00840

Jin, H., Xu, T., Chen, Q., Wu, C., Wang, P., Mao, Q., Zhang, S., Shen, J. & Tong, P. 2016. The fate and distribution of autologous bone marrow mesenchymal stem cells with intra-arterial infusion in osteonecrosis of the femoral head in dogs. Stem Cells International 2016: 8616143.

Johnson, J.E. 2010. Cell Entry by Non-Enveloped Viruses. Berlin, Heidelberg: Springer.

Jung, Y., Bauer, G. & Nolta, J.A. 2012. Concise review: Induced pluripotent stem cell‐ derived mesenchymal stem cells: Progress toward safe clinical products. Stem Cells 30(1): 42-47.

Khan, M.R., Dudhia, J., David, F.H., De Godoy, R., Mehra, V., Hughes, G., Dakin, S.G., Carr, A.J., Goodship, A.E. & Smith, R.K.W. 2018. Bone marrow mesenchymal stem cells do not enhance intra-synovial tendon healing despite engraftment and homing to niches within the synovium. Stem Cell Research & Therapy 9: 169.

Kim, S.M., Jeong, C.H., Woo, J.S., Ryu, C.H., Lee, J.H. & Jeun, S.S. 2016. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: Tropism for brain tumors and biodistribution. International Journal of Nanomedicine 11: 13-23.

Kuhlmann, C.R.W., Schaefer, C.A., Reinhold, L., Tillmanns, H. & Erdogan, A. 2005. Signalling mechanisms of SDF-induced endothelial cell proliferation and migration. Biochemical and Biophysical Research Communications 335(4): 1107-1114.

Lan, Y., Kodati, S., Lee, H.S., Omoto, M., Jin, Y. & Chauhan, S.K. 2012. Kinetics and function of mesenchymal stem cells in corneal injury. Investigative Ophthalmology & Visual Science 53(7): 3638-3644.

Li, G., Miao, F., Zhu, J. & Chen, Y. 2017. Anti‑angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt‑1. Molecular Medicine Reports 16(5): 5799-5806.

Li, G., Zhang, Y., Cai, S., Sun, M., Wang, J., Li, S., Li, X., Tighe, S., Chen, S., Xie, H. & Zhu, Y. 2018. Human limbal niche cells are a powerful regenerative source for the prevention of limbal stem cell deficiency in a rabbit model. Scientific Reports 8: 6566.

Lieu, C., Heymach, J., Overman, M., Tran, H. & Kopetz, S. 2011. Beyond VEGF: Inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clinical Cancer Research 17(19): 6130-6139.

Liu, W.W., Wang, H.X., Yu, W., Bi, X.Y., Chen, J.Y., Chen, L.Z., Ding, L., Han, D.M., Guo, Z.K. & Lei, Y.X. 2015. Treatment of silicosis with hepatocyte growth factor-modified autologous bone marrow stromal cells: A non-randomized study with follow-up. Genet. Mol. Res. 14(3): 10672-10681.

Liu, X., Hu, J., Sun, S., Li, F., Cao, W., Wang, Y., Wang, Y.U. & Yu, Z. 2015. Mesenchymal stem cells expressing interleukin-18 suppress breast cancer cells in vitro. Experimental and Therapeutic Medicine 9(4): 1192-1200.

Mali, S. 2013. Delivery systems for gene therapy. Indian Journal of Human Genetics 19(1): 3-8.

Mansoor, H., Ong, H.S., Riau, A.K., Stanzel, T.P., Mehta, J.S. & Yam, G.H-F. 2019. Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. International Journal of Molecular Sciences 20(12): 2853.

Marofi, F., Vahedi, G., Biglari, A., Esmaeilzadeh, A. & Athari, S.S. 2017. Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer. Frontiers in Immunology 8: 1770.

Martin, P., Albagli, O., Poggi, M.C., Boulukos, K.E. & Pognonec, P. 2006. Development of a new bicistronic retroviral vector with strong IRES activity. BMC Biotechnology 6: 4.

McGinley, L., McMahon, J., Strappe, P., Barry, F., Murphy, M., O'Toole, D. & O'Brien, T. 2011. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Research & Therapy 2(2): 12.

Niess, H., von Einem, J.C., Thomas, M.N., Michl, M., Angele, M.K., Huss, R., Günther, C., Nelson, P.J., Bruns, C.J. & Heinemann, V. 2015. Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): Study protocol of a phase I/II clinical trial. BMC Cancer 15: 237.

Niu, J., Wang, Y., Wang, J., Bin, L. & Hu, X. 2016. Delivery of sFIT-1 engineered MSCs in combination with a continuous low-dose doxorubicin treatment prevents growth of liver cancer. Aging 8(12): 3520-3534. https://doi.org/10.18632/aging.101146

Nowakowski, A., Andrzejewska, A., Janowski, M., Walczak, P. & Lukomska, B. 2013. Genetic engineering of stem cells for enhanced therapy. Acta Neurobiol. Exp. (Wars) 73(1): 1-18.

Pawitan, J.A., Bui, T.A., Mubarok, W., Antarianto, R.D., Nurhayati, R.W., Dilogo, I.H. & Oceandy, D. 2020. Enhancement of the therapeutic capacity of mesenchymal stem cells by genetic modification: A systematic review. Frontiers in Cell and Developmental Biology 8: 587776. https://doi.org/10.3389/fcell.2020.587776

Piri, Z., Esmaeilzadeh, A. & Hajikhanmirzaei, M. 2012. Interleukin-25 as a candidate gene in immunogene therapy of pancreatic cancer. Journal of Medical Hypotheses and Ideas 6(2): 75-79.

Pittenger, M.F., Discher, D.E., Péault, B.M., Phinney, D.G., Hare, J.M. & Caplan, A.I. 2019. Mesenchymal stem cell perspective: Cell biology to clinical progress. npj Regenerative Medicine 4: 22. https://doi.org/10.1038/s41536-019-0083-6

Porada, C.D. & Almeida-Porada, G. 2010. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Advanced Drug Delivery Reviews 62(12): 1156-1166.

Ramamoorth, M. & Narvekar, A. 2015. Non viral vectors in gene therapy-an overview. Journal of Clinical and Diagnostic Research 9(1): GE01.

Ren, C., Kumar, S., Chanda, D., Chen, J., Mountz, J.D. & Ponnazhagan, S. 2008a. Therapeutic potential of mesenchymal stem cells producing interferon-α in a mouse melanoma lung metastasis model. Stem Cells 26(9): 2332-2338.

Ren, C., Kumar, S., Chanda, D., Kallman, L., Chen, J., Mountz, J.D. & Ponnazhagan, S. 2008b. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Therapy 15(21): 1446-1453.

Ryska, O., Serclova, Z., Mestak, O., Matouskova, E., Vesely, P. & Mrazova, I. 2017. Local application of adipose-derived mesenchymal stem cells supports the healing of fistula: Prospective randomised study on rat model of fistulising Crohn’s disease. Scandinavian Journal of Gastroenterology 52(5): 543-550.

San Martín, C. 2012. Latest insights on adenovirus structure and assembly. Viruses 4(5): 847-877.

Sanchez-Diaz, M., Quiñones-Vico, M.I., Sanabria de la Torre, R., Montero-Vílchez, T., Sierra-Sánchez, A., Molina-Leyva, A. & Arias-Santiago, S. 2021. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: A systematic review. Journal of Clinical Medicine 10(13): 2925.

Sandrin, V., Russell, S. & Cosset, F.L. 2003. Targeting retroviral and lentiviral vectors. In Cellular Factors Involved in Early Steps of Retroviral Replication. Current Topics in Microbiology and Immunology Vol. 281, edited by Young, J.A.T. Berlin, Heidelberg: Springer. pp. 137-178.

Schubert, R., Sann, J., Frueh, J.T., Ullrich, E., Geiger, H. & Baer, P.C. 2018. Tracking of adipose-derived mesenchymal stromal/stem cells in a model of cisplatin-induced acute kidney injury: Comparison of bioluminescence imaging versus qRT-PCR. International Journal of Molecular Sciences 19(9): 2564.

Seow, Y. & Wood, M.J. 2009. Biological gene delivery vehicles: Beyond viral vectors. Molecular Therapy 17(5): 767-777.

Shi, S., Zhang, M., Guo, R., Miao, Y. & Li, B. 2019. Bone marrow–derived mesenchymal stem cell–mediated dual-gene therapy for glioblastoma. Human Gene Therapy 30(1): 106-117.

Sokal, E.M., Lombard, C.A., Roelants, V., Najimi, M., Varma, S., Sargiacomo, C., Ravau, J., Mazza, G., Jamar, J., Versavau, J., Jacobs, V., Jacquemin, M., Eeckhoudt, S., Lambert, C., Stéphenne, X., Smets, F. & Hermans, C. 2017. Biodistribution of liver-derived mesenchymal stem cells after peripheral injection in a hemophilia A patient. Transplantation 101(8): 1845-1851.

Sood, V., Bhansali, A., Mittal, B.R., Singh, B., Marwaha, N., Jain, A. & Khandelwal, N. 2017. Autologous bone marrow derived stem cell therapy in patients with type 2 diabetes mellitus-defining adequate administration methods. World Journal of Diabetes 8(7): 381.

Sun, Q., Huang, Z., Han, F., Zhao, M., Cao, R., Zhao, D., Hong, L., Na, N., Li, H., Miao, B., Hu, J., Meng, F., Peng, Y. & Sun, Q. 2018. Allogeneic mesenchymal stem cells as induction therapy are safe and feasible in renal allografts: Pilot results of a multicenter randomized controlled trial. Journal of Translational Medicine 16(1): 52.

Takano, S., Ishikawa, E., Matsuda, M., Yamamoto, T. & Matsumura, A. 2014. Interferon-β inhibits glioma angiogenesis through downregulation of vascular endothelial growth factor and upregulation of interferon inducible protein 10. Int. J. Oncol. 45(5): 1837- 1846. https://doi.org/10.3892/ijo.2014.2620

Van Hove, A.H. & Benoit, D.S.W. 2015. Depot-based delivery systems for pro-angiogenic peptides: A review. Frontiers in Bioengineering and Biotechnology 3: 102.

Vannucci, L., Lai, M., Chiuppesi, F., Ceccherini-Nelli, L. & Pistello, M. 2013. Viral vectors: A look back and ahead on gene transfer technology. New Microbiol. 36(1): 1-22.

Varkouhi, A.K., Monteiro, A.P.T., Tsoporis, J.N., Mei, S.H.J., Stewart, D.J. & Dos Santos, C.C. 2020. Genetically modified mesenchymal stromal/stem cells: Application in critical illness. Stem Cell Rev. Rep. 16(5): 812-827. https://doi.org/10.1007/s12015-020-10000-1

Via, A.G., Frizziero, A. & Oliva, F. 2012. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J. 2(3): 154-162.

Wang, Q., Zhang, Z., Ding, T., Chen, Z. & Zhang, T. 2013. Mesenchymal stem cells overexpressing PEDF decrease the angiogenesis of gliomas. Bioscience Reports 33(2): e00019.

Wen, Q., Jin, D., Zhou, C-Y., Zhou, M-Q., Luo, W. & Ma, L. 2012. HGF-transgenic MSCs can improve the effects of tissue self-repair in a rabbit model of traumatic osteonecrosis of the femoral head. PLoS ONE 7(5): e37503.

Xu, J., Qu, J., Cao, L., Sai, Y., Chen, C., He, L. & Yu, L. 2008. Mesenchymal stem cell‐ based angiopoietin‐1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. The Journal of Pathology 214(4): 472-481.

Zahler, M.H., Irani, A., Malhi, H., Reutens, A.T., Albanese, C., Bouzahzah, B., Joyce, D., Gupta, S. & Pestell, R.G. 2000. The application of a lentiviral vector for gene transfer in fetal human hepatocytes. The Journal of Gene Medicine 2(3): 186-193.

Zhang, D., Zheng, L., Shi, H., Chen, X., Wan, Y., Zhang, H., Li, M., Lu, L., Luo, S., Yin, T., Lin, H., He, S., Luo, Y. & Yang, L. 2014. Suppression of peritoneal tumorigenesis by placenta-derived mesenchymal stem cells expressing endostatin on colorectal cancer. International Journal of Medical Sciences 11(9): 870-879.

Zhang, N., Luo, X., Zhang, S., Liu, R., Liang, L., Su, W. & Liang, D. 2021. Subconjunctival injection of tumor necrosis factor-α pre-stimulated bone marrow- derived mesenchymal stem cells enhances anti-inflammation and anti-fibrosis in ocular alkali burns. Graefe's Archive for Clinical and Experimental Ophthalmology 259: 929-940.

 

*Corresponding author; email: ewachoy@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

previous